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Abstract

In this paper, the Hermite based Appell matrix polynomials are introduced by using certain
operational methods. Some properties of these polynomials are considered. Further, some
results involving the 2D Appell polynomials are established, which are proved to be useful for
the derivation of results involving the Hermite based Appell matrix polynomials.
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1 Introduction

An important generalization of special functions is special matrix functions. The study of special
matrix polynomials is important due to their applications in certain areas of statistics, physics and
engineering. Matrix analogues of Laguerre, Hermite and Legendre differential equations and the
corresponding polynomial families are studied in [11-13]. The Hermite matrix polynomials and
their extensions and generalizations have been introduced and studied for matrices in CN×N whose
eigenvalues are all situated in the right open half-plane, see for example [11, 14, 19, 20, 22].

We review the definitions and the concepts related to the Hermite matrix polynomials.

Throughout the paper unless otherwise stated, we assume that A is a positive stable matrix in
CN×N , that is, A satisfied the following condition:

Re(µ) > 0, for all µ ∈ σ(A), (1.1)

where σ(A) denotes the set of all the eigenvalues of A.

If D0 is the complex plane cut along the negative real axis and log(z) denotes the principal
logarithm of z, then z1/2 represents exp(1

2 log(z)). If matrix A ∈ CN×N with σ(A) ⊂ D0, then

A1/2 =
√
A denotes the image by z1/2 of the matrix functional calculus [9] acting on the matrix A.

We consider the 2-index 2-variable Hermite matrix polynomials (2I2VHMP) Hn,m(x, y,A), which
are defined by the series [22; p.689]

Hn,m(x, y,A) = n!

[ n
m ]∑

k=0

(−1)kyk(x
√
mA)n−mk

(n−mk)!k!
(n ≥ 0) (1.2)
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and specified by the generating function

exp(xt
√
mA− ytmI) =

∞∑
n=0

Hn,m(x, y,A)
tn

n!
, (1.3)

where I is the unit matrix in CN×N .

We recall that according to the monomiality principle [4, 23] a polynomial set
{
pn(x)

}
(n ∈

N, x ∈ C) is quasi-monomial if there exist two operators M̂ and P̂ , called respectively the multi-
plicative and derivative operators, which when acting on the polynomials pn(x) yield:

M̂
{
pn(x)

}
= pn+1(x), (1.4a)

P̂
{
pn(x)

}
= npn−1(x). (1.4b)

The operators P̂ and M̂ satisfy the commutation relation

[P̂ , M̂ ] = 1̂ (1.5)

and thus display a Weyl group structure. If the considered polynomials set
{
pn(x)

}
is quasi-

monomial, its properties can be deduced from those of the M̂ and P̂ operators. If the operators M̂
and P̂ have a differential realization, then the polynomials pn(x) satisfy the differential equation

M̂P̂
{
pn(x)

}
= npn(x). (1.6)

Assuming here and in the following p0(x) = 1, then pn(x) can be explicitly constructed as:

pn(x) = M̂n
{

1
}

(1.7)

and consequently the generating function of pn(x) can be cast in the form

exp(tM̂)
{

1
}

=
∞∑

n=0

pn(x)
tn

n!
. (1.8)

We note that the 2I2VHMP Hn,m(x, y,A) are quasi-monomial under the action of the operators
[21; p.43]

M̂H := x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1
, (1.9a)

P̂H :=
1√
mA

∂

∂x
. (1.9b)

The 2I2VHMP Hn,m(x, y,A) are also defined through the operational rule [22; p.699]

Hn,m(x, y,A) = exp

(
−y(
√
mA)−m

∂m

∂xm

){
(x
√
mA)n

}
. (1.10)
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Next, we recall that the 3-index 3-variable Hermite matrix polynomials (3I3VHMP)H
(m,s)
n (x, y, z;A)

are defined by the series [19]

H(m,s)
n (x, y, z;A) = n!

[ns ]∑
k=0

[n−sk
m ]∑

r=0

(−1)rzkyr(x
√
mA)n−sk−mr

k!r!(n− sk −mr)!
(n ≥ 0) (1.11)

and specified by the generating function

exp(xt
√
mA− ytmI + ztsI) =

∞∑
n=0

H(m,s)
n (x, y, z;A)

tn

n!
, (1.12)

Note that, for y = 0, the 3I3VHMP H
(m,s)
n (x, y, z;A) reduce to the 3-index 2-variable Hermite

matrix polynomials (3I2VHMP) H
(s)
n,m(x, z;A) [19] defined by

exp(xt
√
mA+ ztsI) =

∞∑
n=0

H(s)
n,m(x, z;A)

tn

n!
, (1.13)

which for s = m and z → −z, reduces to the 2I2VHMP Hn,m(x, z,A), i.e., we have

H(m)
n,m(x,−z;A) = Hn,m(x, z,A). (1.14)

Also, the 3I2VHMP H
(s)
n,m(x, y;A) are linked to the Gould-Hopper polynomials (GHP) H

(s)
n (x, y)

[10] by the following relation:

H(s)
n,m(x, y;A) = H(s)

n (x
√
mA, y), (1.15)

where H
(s)
n (x, y) are defined by the generating function

exp(xt+ yts) =
∞∑

n=0

H(s)
n (x, y)

tn

n!
. (1.16)

The 3I3VHMP H
(m,s)
n (x, y, z;A) are also defined by the following operational rule:

H(m,s)
n (x, y, z;A) = exp

(
−y(
√
mA)−m

∂m

∂xm

){
H(s)

n,m(x, z;A)
}
, (1.17)

which by using relation (1.15) gives the following equivalent operational representation:

H(m,s)
n (x, y, z;A) = exp

(
−y(
√
mA)−m

∂m

∂xm

){
H(s)

n (x
√
mA, z

}
. (1.18)

Further, we recall that the 2D Appell polynomials R
(s)
n (x, y) are defined by means of the gen-

erating function [2; p.835] (see also [3; p.417])

A(t) exp(xt+ yts) =
∞∑

n=0

R(s)
n (x, y)

tn

n!
, (1.19)
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where A(t) has (at least the formal) expansion

A(t) =
∞∑

n=0

An
tn

n!
(A0 6= 0) (1.20)

and An are the Appell numbers.

For y = 0, the 2D Appell polynomials R
(s)
n (x, y) reduce to the Appell polynomials An(x) [1],

i.e, we have
R(s)

n (x, 0) = An(x), (1.21)

where An(x) are defined by the generating function

A(t) exp(xt) =
∞∑

n=0

An(x)
tn

n!
. (1.22)

The explicit forms of the 2D Appell polynomials R
(s)
n (x, y) in terms of the GHP H

(s)
n (x, y) and

vice-versa are given as [2, p.836] (see also [3]):

R(s)
n (x, y) =

n∑
k=0

(
n

k

)
An−k H

(s)
k (x, y), (1.23)

H(s)
n (x, y) =

n∑
k=0

(
n

k

)
Qn−k R

(s)
k (x, y), (1.24)

whereQk are the coefficients of the Taylor expansion in a neighborhood of the origin of the reciprocal
1/A(t). Also, in view of generating functions (1.19), (1.22) and (1.16), we have

R(s)
n (x+ z, y) =

n∑
k=0

(
n

k

)
R

(s)
k (x, y) zn−k, (1.25)

R(s)
n (x+ z, y) =

n∑
k=0

(
n

k

)
H

(s)
k (x, y) An−k(z), (1.26)

R(s)
n (x+ z, y + w) =

n∑
k=0

(
n

k

)
R

(s)
k (x, y) H

(s)
n−k(z, w). (1.27)

We consider some members of the 2D Appell polynomial family R
(s)
n (x, y) by taking suitable

values of the function A(t).
Taking A(t) = t

(et−1) in equation (1.19), we have [3]

t

(et − 1)
exp(xt+ yts) =

∞∑
n=0

B(s)
n (x, y)

tn

n!
, (1.28)

where B
(s)
n (x, y) denotes the 2D Bernoulli polynomials [3].
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Next, taking A(t) = 2
(et+1) and A(t) = 2t

(et+1) in equation (1.19) and denoting the 2D Euler and

2D Genocchi polynomials by E
(s)
n (x, y) and G

(s)
n (x, y) respectively, we have

2

(et + 1)
exp(xt+ yts) =

∞∑
n=0

E(s)
n (x, y)

tn

n!
, (1.29)

2t

(et + 1)
exp(xt+ yts) =

∞∑
n=0

G(s)
n (x, y)

tn

n!
. (1.30)

Operational identities are useful for the algebraic decomposition of exponential operators [16].
Recently Srivastava et al. [5,7,8,15,17,18] has established some results for the sheffer and Appell
polynomials and also for the new classes of mixed special polynomials related to these polynomials
by employing certain operational methods. This paper is an attempt to further stress the impor-
tance of operational methods in introducing new families of special matrix polynomials. In this
paper, the Hermite based Appell matrix polynomials associated with 2I2VHMP are introduced and
their properties are established.

2 Hermite-Appell matrix polynomials

We introduce the Hermite-Appell matrix polynomials (HAMP) by means of the generating function.

Denoting the HAMP by HR
(m,s)
n (x, y, z;A), we derive the following generating function for these

polynomials:

A(t) exp(xt
√
mA− ytmI + ztsI) =

∞∑
n=0

HR
(m,s)
n (x, y, z;A)

tn

n!
, (2.1)

where m, s are both positive integers.
In order to obtain generating function (2.1), we replace x in equation (1.19) by the multiplicative

operator M̂H given in equation (1.9a) of the 2I2VHMP Hn,m(x, y,A) and y by z, so that we have

A(t) exp

((
x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1

)
t+ zts

)
=
∞∑

n=0

HR
(m,s)
n (x, y, z;A)

tn

n!
. (2.2)

Now, decoupling the exponential operator in the l.h.s. of the above equation by using the Weyl
identity [6]

eÂ+B̂ = eÂeB̂e
−k
2

(
[Â, B̂] = k, k ∈ C

)
, (2.3)

we find

A(t) exp(zts) exp

((
x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1

)
t

)
=
∞∑

n=0

HR
(m,s)
n (x, y, z;A)

tn

n!
, (2.4)

which on making use of the Crofton-type identity [6]

f

(
x+mλ

dm−1

dxm−1

){
1
}

= exp

(
λ
dm

dxm

){
f(x)

}
, (2.5)

to decouple the second exponential in the l.h.s. gives the generating function (2.1).
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Next, we proceed to find the series definition of the HAMP HR
(m,s)
n (x, y, z;A). Expanding

A(t) in equation (2.1) by using equation (1.20) and then using equation (1.12) in the l.h.s. of the
resultant equation, we find (after equating the coefficients of like powers of t)

HR
(m,s)
n (x, y, z;A) =

n∑
k=0

(
n

k

)
An−k H

(m,s)
k (x, y, z;A), (2.6)

which in view of equation (1.11) gives the following series definition of the HAMP HR
(m,s)
n (x, y, z;A):

HR
(m,s)
n (x, y, z;A) =

n∑
k=0

(
n

k

)
An−k k!

[ ks ]∑
p=0

[ k−sp
m ]∑

r=0

(−1)rzpyr(x
√
mA)k−sp−mr

p!r!(k − sp−mr)!
(k ≥ 0) (2.7)

Differentiating equation (2.1) partially with respect to x, y and z, we get the following matrix

differential recurrences relations satisfied by HR
(m,s)
n (x, y, z;A):

∂

∂x
HR

(m,s)
n (x, y, z;A) = n

√
mA HR

(m,s)
n−1 (x, y, z;A) (n ≥ 1) , (2.8)

∂

∂y
HR

(m,s)
n (x, y, z;A) = − n!

(n−m)!
HR

(m,s)
n−m (x, y, z;A) (n ≥ m) , (2.9)

∂

∂z
HR

(m,s)
n (x, y, z;A) =

n!

(n− s)! HR
(m,s)
n−s (x, y, z;A) (n ≥ s) . (2.10)

Also, from equation (2.8), we have

∂m

∂xm
HR

(m,s)
n (x, y, z;A) = (

√
mA)m

n!

(n−m)!
HR

(m,s)
n−m (x, y, z;A) (n ≥ m) , (2.11)

∂s

∂xs
HR

(m,s)
n (x, y, z;A) = (

√
mA)s

n!

(n− s)! HR
(m,s)
n−s (x, y, z;A) (n ≥ s) . (2.12)

Consequently, we get the following matrix differential relations for the HAMP HR
(m,s)
n (x, y, z;A):

∂m

∂xm
HR

(m,s)
n (x, y, z;A) = −(

√
mA)m

∂

∂y
HR

(m,s)
n (x, y, z;A), (2.13)

∂s

∂xs
HR

(m,s)
n (x, y, z;A) = (

√
mA)s

∂

∂z
HR

(m,s)
n (x, y, z;A). (2.14)

In view of equations (1.19), (1.22) and (2.1), we have

HR
(m,s)
n (x, 0, z;A) = R(s)

n (x
√
mA, z), (2.15)

HR
(m,s)
n (x, 0, 0;A) = Rn(x

√
mA). (2.16)

Now, using initial conditions (2.15) and (2.16) in matrix differential relations (2.13) and (2.14),

we get the following operational representation for the HAMP HR
(m,s)
n (x, y, z;A):

HR
(m,s)
n (x, y, z;A) = exp

(
−y(
√
mA)−m

∂m

∂xm

){
R(s)

n (x
√
mA, z)

}
, (2.17)
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Some properties of Hermite based Appell matrix polynomials 127

HR
(m,s)
n (x, y, z;A) = exp

(
−y(
√
mA)−m

∂m

∂xm
+ z(
√
mA)−s

∂s

∂xs

){
Rn(x

√
mA)

}
. (2.18)

A simple computations shows that the operational rule (2.17) can be written in the following
form:

HR
(m,s)
n (x+ w, y, z;A) = exp

(
−y(
√
mA)−m

∂m

∂xm

){
R(s)

n ((x+ w)
√
mA, z)

}
. (2.19)

In the next section, we frame the HAMP HR
(m,s)
n (x, y, z;A) within the context of monomiality

principle.

3 Monomiality principle and Hermite-Appell matrix polynomials

In order to frame the HAMP HR
(m,s)
n (x, y, z;A) within the context of monomiality principle for-

malism, we prove the following result:

Theorem 3.1. The HAMP HR
(m,s)
n (x, y, z;A) are quasi-monomial with respect to the following

multiplicative and derivative operators:

M̂HA := x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1
+ sz(

√
mA)−(s−1)

∂s−1

∂xs−1
+
A′(D̂x/

√
mA)

A(D̂x/
√
mA)

(3.1)

and

P̂ :=
1√
mA

∂

∂x
(3.2)

respectively.

Proof Consider the identity

(D̂x/
√
mA)

{
A(t) exp(xt

√
mA− ytmI + ztsI)

}
= t

{
A(t) exp(xt

√
mA− ytmI + ztsI)

}
. (3.3)

Since, A(t) is an invertible series and A′(t)
A(t) has Taylor’s series expansion in power of t, therefore,

we have

A′(D̂x/
√
mA)

A(D̂x/
√
mA)

{
A(t) exp(xt

√
mA− ytmI + ztsI)

}

=
A′(t)

A(t)

{
A(t) exp(xt

√
mA− ytmI + ztsI)

}
, (3.4)

where the prime denotes the derivative of the function A(t).

Now, differentiating equation (2.1) partially with respect to t, we have(
x
√
mA−mytm−1I + szts−1I +

A′(t)

A(t)

)
A(t) exp(xt

√
mA− ytmI + ztsI)
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=
∞∑

n=0

HR
(m,s)
n+1 (x, y, z;A)

tn

n!
. (3.5)

Using equations (3.4) and (2.1) in the l.h.s. of equation (3.5), we find

x
√
mA

∞∑
n=0

HR
(m,s)
n (x, y, z;A)

tn

n!
−my

∞∑
n=0

HR
(m,s)
n (x, y, z;A)

tn+m−1

n!

+sz
∞∑

n=0

HR
(m,s)
n (x, y, z;A)

tn+s−1

n!
+
A′(D̂x/

√
mA)

A(D̂x/
√
mA)

∞∑
n=0

HR
(m,s)
n (x, y, z;A)

tn

n!

=

∞∑
n=0

HR
(m,s)
n+1 (x, y, z;A)

tn

n!
. (3.6)

Using equations (2.11) and (2.12) in the l.h.s. of the above equation, we find(
x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1
+ sz(

√
mA)−(s−1)

∂s−1

∂xs−1

+
A′(D̂x/

√
mA)

A(D̂x/
√
mA)

) ∞∑
n=0

HR
(m,s)
n (x, y, z;A)

tn

n!
=
∞∑

n=0

HR
(m,s)
n+1 (x, y, z;A)

tn

n!
. (3.7)

Equating the coefficients of like powers of t in both sides of equation (3.7), we get(
x
√
mA−my(

√
mA)−(m−1)

∂m−1

∂xm−1
+ sz(

√
mA)−(s−1)

∂s−1

∂xs−1

+
A′(D̂x/

√
mA)

A(D̂x/
√
mA)

)
HR

(m,s)
n (x, y, z;A) = HR

(m,s)
n+1 (x, y, z;A), (3.8)

which in view of the monomiality principle equation (1.4a) yields assertion (3.1) of Theorem 2.1.
Also, from recurrence relation (2.8) and in view of equations (1.4b), we get assertion (3.2) of

Theorem 2.1.

Remark 3.1. Using equations (3.1) and (3.2) in monomiality principle equation (1.6), we get the

following matrix differential equation satisfied by the HAMP HR
(m,s)
n (x, y, z;A):(

sz(
√
mA)−s

∂s

∂xs
−my(

√
mA)−m

∂m

∂xm
+ x

∂

∂x

+
1√
mA

A′(Dx/
√
mA)

A(Dx/
√
mA)

∂

∂x
− n

)
HR

(m,s)
n (x, y, z;A) = 0. (3.9)
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4 Applications

We derive some results for the HAMP HR
(m,s)
n (x, y, z;A) from the results of the corresponding 2D

Appell polynomials R
(s)
n (x, y) by making use of suitable operational rules.

I. Replacing x by x
√
mA and y by z in equation (1.24) and operating exp

(
−y(
√
mA)−m ∂m

∂xm

)
on

the resultant equation and then using equations (1.18) and (2.17) in the l.h.s. and r.h.s. respectively,
we get

H
(m,s)
k (x, y, z;A) =

n∑
k=0

(
n

k

)
Qn−k HR

(m,s)
k (x, y, z;A). (4.1)

II. Replacing x by x
√
mA, z by w

√
mA and y by z in equations (1.25), (1.26) and then operating

exp
(
−y(
√
mA)−m ∂m

∂xm

)
on the resultant equations and then using equations (1.18), (2.17) and

(2.19), we get

HR
(m,s)
n (x+ w, y, z;A) =

n∑
k=0

(
n

k

)
HR

(m,s)
k (x, y, z;A)(w

√
mA)n−k, (4.2)

HR
(m,s)
n (x+ w, y, z;A) =

n∑
k=0

(
n

k

)
H

(m,s)
k (x, y, z;A)An−k(w

√
mA), (4.3)

respectively.

III. Making the same above replacements in equation (1.25) and operating

exp
(
−y(
√
mA)−m ∂m

∂wm

)
on the resultant equation and then using equations (1.21) and (1.10) in

the l.h.s. and r.h.s. respectively, we get

HR
(m,s)
n (x+ w, y, z;A) =

n∑
k=0

(
n

k

)
R

(s)
k (x

√
mA, z) Hn−k,m(w, y,A). (4.4)

IV. Replacing x by x
√
mA, z by w

√
mA, y by z and w by v in equation (1.27) and operating

exp
(
−y(
√
mA)−m ∂m

∂xm

)
and exp

(
−y(
√
mA)−m ∂m

∂wm

)
on the resultant equation respectively and

then using equations (2.19), (2.17), (1.18) and (1.15), we get

HR
(m,s)
n (x+ w, y, z + v;A) =

n∑
k=0

(
n

k

)
HR

(m,s)
k (x, y, z;A)H

(s)
n−k,m(w, v;A) (4.5)

and

HR
(m,s)
n (x+ w, y, z + v;A) =

n∑
k=0

(
n

k

)
R

(s)
k (x

√
mA, z)H

(m,s)
n−k (w, y, v;A), (4.6)

respectively.
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